Molecular basis of TCR selectivity, cross-reactivity, and allelic discrimination by a bacterial superantigen: integrative functional and energetic mapping of the SpeC-Vbeta2.1 molecular interface.
نویسندگان
چکیده
Superantigens activate large fractions of T cells through unconventional interactions with both TCR beta-chain V domains (Vbetas) and MHC class II molecules. The bacterial superantigen streptococcal pyrogenic exotoxin C (SpeC) primarily stimulates human Vbeta2(+) T cells. Herein, we have analyzed the SpeC-Vbeta2.1 interaction by mutating all SpeC residues that make contact with Vbeta2.1 and have determined the energetic and functional consequences of these mutations. Our comprehensive approach, including mutagenesis, functional readouts from both bulk T cell populations, and an engineered Vbeta2.1(+) Jurkat T cell, as well as surface plasmon resonance binding analysis, has defined the SpeC "functional epitope" for TCR engagement. Although only two SpeC residues (Tyr(15) and Arg(181)) are critical for activation of virtually all human CD3(+) T cells, a larger cluster of four hot spot residues are required for interaction with Vbeta2.1. Three of these residues (Tyr(15), Phe(75), and Arg(181)) concentrate their binding energy on the CDR2 loop residue Ser(52a), a noncanonical residue insertion found only in Vbeta2 and Vbeta4 chains. Plasticity of this loop is important for recognition by SpeC. Although SpeC interacts with the Vbeta2.1 hypervariable CDR3 loop, our data indicate these contacts have little to no influence on the functional interaction with Vbeta2.1. These studies also provide a molecular basis for selectivity and cross-reactivity of SpeC-TCR recognition and reveal a degree of fine specificity in these interactions, whereby certain SpeC mutants are capable of distinguishing between different alleles of the same Vbeta domain subfamily.
منابع مشابه
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides pre...
متن کاملThe Effect of Boron Nitride Nanocage on the Thermodynamic and Energetic Properties of TATB
In this research, IR and frontier molecular orbital computations were employed for investigating the influence of B12N12 on the energetic and thermodynamic parameters of TATB. The Computed enthalpy changes and Gibbs free energy variations showed TATB interaction with this nanostructure is exothermic, spontaneous and experimentally possible. The specific ...
متن کاملMolecular docking and in silico ADME prediction of Ticagrelor as an antagonist of the P2Y12 receptor
The purpose of the present research work is prediction of electronic and physico-chemical properties of the novel medicinal compound Ticagrelor (AZD6140) using density functional theory (DFT) method. Firstly, its molecular structure was optimized at B3LYP/6-311++G(d,p) basis set of theory at room temperature. The global reactivity indices used to study the reactivity and stability of the title ...
متن کاملAssessment of the Functional Regions of the Superantigen Staphylococcal Enterotoxin B
The functional activity of superantigens is based on capacity of these microbial proteins to bind to both the β-chain of the T cell receptor (TcR) and the major histocompatibility complex (MHC) class II dimer. We have previously shown that a subset of the bacterial superantigens also binds to a membrane protein, designated p85, which is expressed by renal epithelial cells. This binding activity...
متن کاملMolecular Cloning, Characterization, and Expression of Cuc m 2, a Major Allergen in Cucumis melo
Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 177 12 شماره
صفحات -
تاریخ انتشار 2006